

It's how we treat people.

4/16/2021

# Health Care Economics: Cost-effectiveness Alongside Clinical Trials

Paul Kolm, PhD Associate Director Department of Biostatistics and Biomedical Informatics BERD-CTSA (Georgetown-Howard) MedStar Health Research Institute

#### **Outline**

- Patient-level CEA
- Estimating costs
- Estimating effectiveness
- Cost-effectiveness analysis
- Cost-effectiveness plane
- Sensitivity analyses
- CEA in an observational study



### **Cost-effectiveness**

- Costs have become important factor in medical decision making.
- Therapy, treatment, device, etc. to improve health, quality of life, etc.
- Comes with a cost usually higher than the previous standard of treatment.
- How much is an individual or society willing to pay for the improvement? Willingness-to-pay (WTP)





# Cost-effectiveness patient-level data

- Outcome from study -Survival, life years gained, Quality-adjusted life years (QALYs)
- QALYs calculated by multiplying survival by utility, a measure of health status scaled from zero (death) to one (perfect health).
- Cost of treatment Procedures, physician, medications, hospitalizations





# **Estimating patient-level costs**

- UB-04
- System reimbursement schedules
- Diagnosis related group (DRG)
- Case Mix Group (CMG) Canada
- Medicare Medicaid data
- Medications Redbook wholesale costs





### What to cost?

- Primary events: CV death, MI, Stroke, etc.
- SAEs: bleeding, syncope, etc.
- Subsequent hospitalizations: heart failure, PVD, etc.
- Physician costs: separate from hospital costs
- Follow-up care: rehabilitation costs
- Medications: statins, diuretics, etc.
- Lost wages: but usually too difficult to estimate





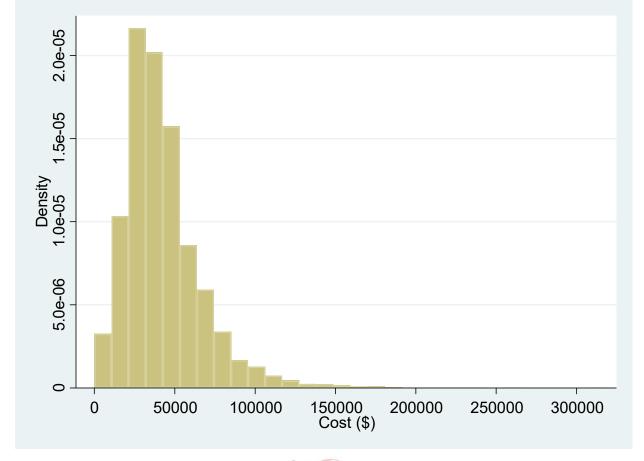
#### <u>C</u>lopidogrel for the <u>Reduction of Events During Observation (CREDO) trial</u>

Table 3: Top Ten Hospitalization Diagnostic Related Groups (DRGs) in CREDO

| DRG | Description                                                          | Numbe<br>Hospitali<br>Clopidogrel | zations | Hospitalization<br>Cost (MEDSTAT) | Hospitalization<br>Cost (Medicare) |
|-----|----------------------------------------------------------------------|-----------------------------------|---------|-----------------------------------|------------------------------------|
| 116 | OTH PERM CARD PACEMAK IMPL OR PTCA W<br>CORONARY ARTERY STENT IMPLNT | 882                               | 883     | \$17,768.60                       | \$11,515.94                        |
| 112 | PERCUTANEOUS CARDIOVASCULAR<br>PROCEDURES                            | 221                               | 234     | \$10,687.98                       | \$9,399.47                         |
| 140 | ANGINA PECTORIS                                                      | 125                               | 118     | \$4,136.23                        | \$2,064.18                         |
| 143 | CHEST PAIN                                                           | 102                               | 109     | \$3,663.06                        | \$2,008.86                         |
| 107 | CORONARY BYPASS W CARDIAC CATH                                       | 89                                | 88      | \$41,764.23                       | \$27,039.70                        |
| 133 | ATHEROSCLEROSIS W/O CC                                               | 12                                | 21      | \$7,921.07                        | \$2,439.87                         |
| 127 | HEART FAILURE & SHOCK                                                | 20                                | 12      | \$7,207.79                        | \$4,557.51                         |
| 90  | SIMPLE PNEUMONIA & PLEURISY AGE >17 W/O CC                           | 8                                 | 12      | \$4,800.75                        | \$2,516.23                         |
| 106 | CORONARY BYPASS W PTCA                                               | 7                                 | 12      | \$43,902.70                       | \$37,259.59                        |
| 122 | CIRCULATORY DISORDERS W AMI W/O MAJOR COMP, DISCHARGED ALIVE         | 8                                 | 9       | \$11,047.59                       | \$4,260.53                         |






| Table 2. Acute CVD Event Costs (Per Episode) |          |                       |                 |          |              |           |  |  |  |  |
|----------------------------------------------|----------|-----------------------|-----------------|----------|--------------|-----------|--|--|--|--|
| Costs (2018 USD)<br>by age group             | Mean     | Standard<br>Deviation | Minimum Maximur |          | Distribution | Reference |  |  |  |  |
| Fatal CVD event                              |          |                       |                 |          |              |           |  |  |  |  |
| 45-64                                        | \$18,940 | \$5,175               | \$11,921        | \$32,205 | Gamma        |           |  |  |  |  |
| 65-84                                        | \$17,473 | \$4,567               | \$11,518        | \$29,420 | Gamma        | (4,5)     |  |  |  |  |
| ≥85                                          | \$11,970 | \$3,394               | \$7,620         | \$20,926 | Gamma        |           |  |  |  |  |
| Myocardial infarction                        |          |                       |                 |          |              |           |  |  |  |  |
| 45-64                                        | \$22,542 | \$3,908               | \$14,353        | \$29,672 | Gamma        |           |  |  |  |  |
| 65-84                                        | \$22,410 | \$4,176               | \$14,241        | \$30,612 | Gamma        | (4,5)     |  |  |  |  |
| ≥85                                          | \$14,159 | \$3,822               | \$8,288         | \$23,270 | Gamma        |           |  |  |  |  |

<sup>4. (</sup>HCUP) NCaUP. Overview of the National (Nationwide) Inpatient Sample (NIS). Agency for Healthcare Research and Quality, 2019.





<sup>5.</sup> Bress AP, Bellows BK, King JB et al. Cost-Effectiveness of Intensive versus Standard Blood-Pressure Control. N Engl J Med 2017;377:745-755.







### **Utilities**

- Measure of patient quality of life.
- Scaled from 0 (death) to 1 (perfect health).
- Patient reported obtained during the trial via published instruments (EQ-5D).
- Estimated from similar sample (age and sex) if not available in trial.





#### Supplemental Table 4. Cost-effectiveness analysis utility values.

| Description            | Value   | Distribution | SD     | Reference |
|------------------------|---------|--------------|--------|-----------|
| Chronic Utility        |         |              |        |           |
| No history of CVD      | 1.0000  | Beta         |        | 18,19     |
| History of angina      | 0.9064  | Beta         | 0.0223 | 18,19     |
| History of MI          | 0.9648  | Beta         | 0.0287 | 18,19     |
| History of stroke      | 0.8835  | Beta         | 0.0241 | 18,19     |
| History of MI & stroke | 0.8524  | Beta         | 0.0359 | 18,19     |
| Acute Disutility*      |         |              |        |           |
| Angina                 | -0.0078 | Beta         | 0.0021 | 18,19     |
| PCI                    | -0.0096 | Beta         | 0.0028 | 18,19     |
| CABG                   | -0.0192 | Beta         | 0.0046 | 18,19     |
| MI                     | -0.0079 | Beta         | 0.0022 | 18,19     |
| Stroke                 | -0.0113 | Beta         | 0.0031 | 18,19     |

<sup>\*</sup> Disutilities applied if patient experienced event or revascularization during the trial. SD = standard deviation; CVD = cardiovascular disease; MI = myocardial infarction; PCI = percutaneous coronary intervention; CABG = coronary artery bypass grafting.





### **Trial effectiveness**

- Survival
- Life-years gained.
- Quality adjusted life years (QALYs) = utility x life years.
- $(4.5)^*$  .8835 = 3.98 (hx of stroke)
- 3.98 .0113 = 3.97 (non-fatal stroke during trial)





#### Incremental cost-effectiveness





### What is cost-effective?

- US: ICER = \$50,000
- Dates back to 1950's congressional hearing on cost of dialysis.
- Spend \$50,000 for 1 QALY gained.
- Willingness-to-pay (wtp)?
- Depends on perspective: society, insurance company, etc.

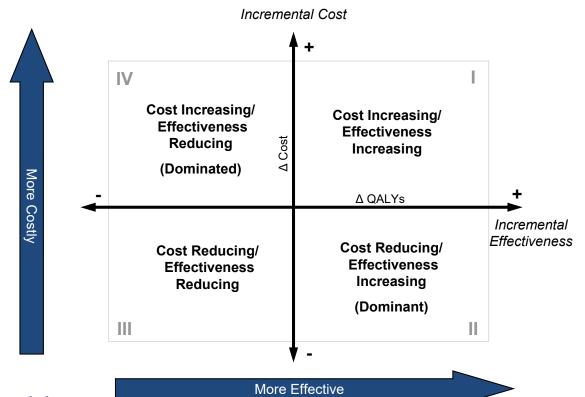




# Statistical analysis of ICER

- ICERs with same sign may have different meaning
- Ratio of differences in means
- Need a sampling distribution for the ICER (e.g., normal, gamma, beta) to estimate variability (standard deviation)






# **Bootstrap with replacement**

- Draw random samples from data
- Draw same number of random samples as number of patients or observations in data – calculate statistic of interest
- Replace each observation after it is drawn
- Repeat a large number of times (5000 10,000)
- Results in a distribution of the statistic of interest (ICER)



#### **Cost-effectiveness plane**





### **Cost-effectiveness plane**

Incremental Cost

+

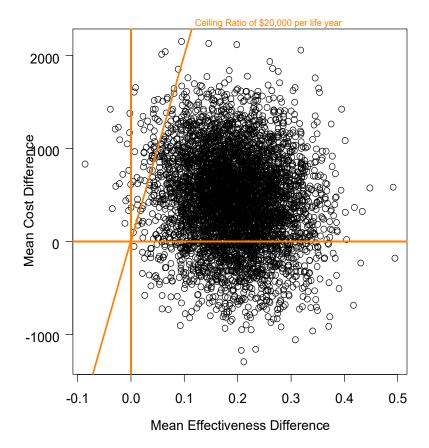
$$\frac{\$500 - \$200}{0.2 - 0.5} = -\$1,000$$

Quadrant IV – "A" dominated, costlier and less effective

$$\frac{\$500 - \$200}{0.5 - 0.2} = \$1,000$$

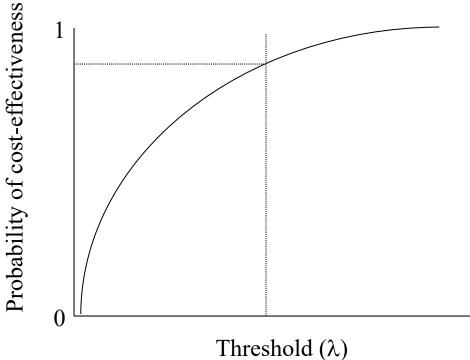
Quadrant I – "A" costlier, but more effective

0


$$\frac{\$200 - \$500}{0.2 - 0.5} = \$1,000$$

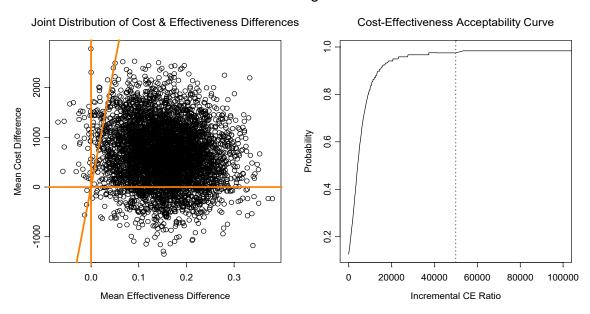
Quadrant III – "A" cheaper, but less effective

$$\frac{\$200 - \$500}{0.5 - 0.2} = -\$1,000$$


Quadrant II – "A" dominant, cheaper <u>and</u> more effective

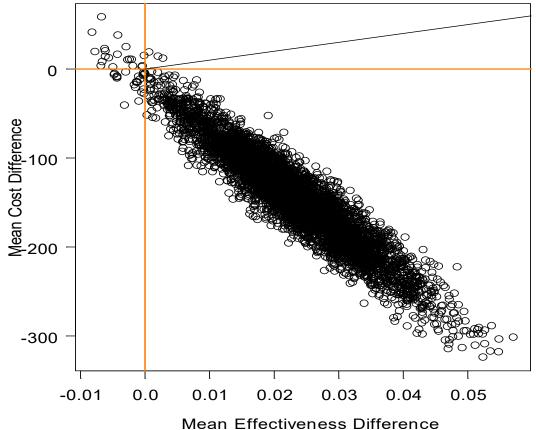




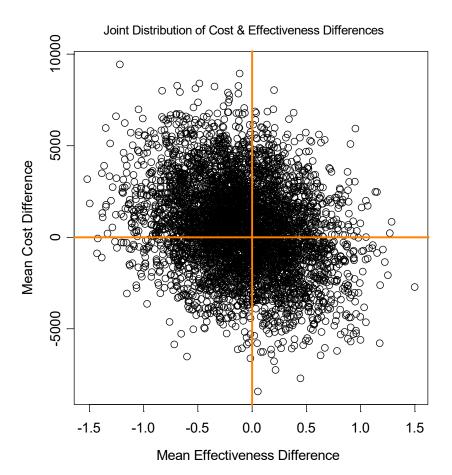



#### **Cost-Effectiveness Acceptability Curve**






### Long Term Cost Effectiveness (Cost per life year gained) Framingham






#### Joint Distribution of Cost & Effectiveness Differences









# **CEA** discounting

- Value of QALY diminishes over time.
- No discounting in first year.
- Second year  $(3\%) = (1/(1 + 0.03)^2)$
- Third year  $(3\%) = (1/(1 + 0.03)^3)$
- Etc.
- Discount both QALYs and costs.





# **Sensitivity Analyses**

- Every source of data used in cost-effectiveness research is subject to error – cost and QALYs.
  - Demonstrate how error affected the accuracy and reliability of the cost-effectiveness.
  - Judge the robustness of conclusions
  - Determine whether results are insensitive to substantial but plausible variation in a parameter





#### **Types of Sensitivity Analysis**

- One-way (univariate) Sensitivity Analysis
- Two-way (bivariate) Sensitivity Analysis
- Multi-way Sensitivity Analysis
- Probabilistic sensitivity analysis
- Scenario analyses (e.g., what if treatment effect only lasts 1 year?)

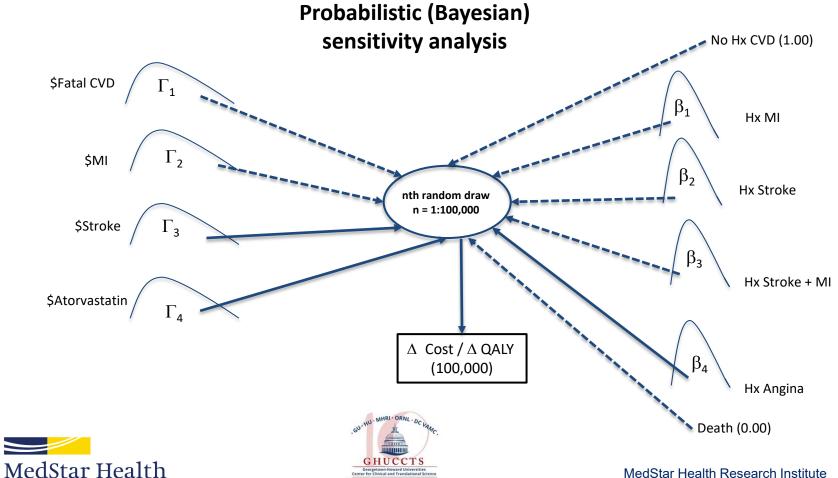




#### What does a probabilistic sensitivity analysis do?

- Define a distribution of a parameter.
- Draw a random value from the distribution.
- Calculate the ICER with the value drawn.
- Repeat the process a large number of times.
- Report the mean & standard deviation of the distribution, or percentiles of the distribution, or what proportion of the results are below a threshold value (wtp) for the ICER.

### **Bayesian analysis**

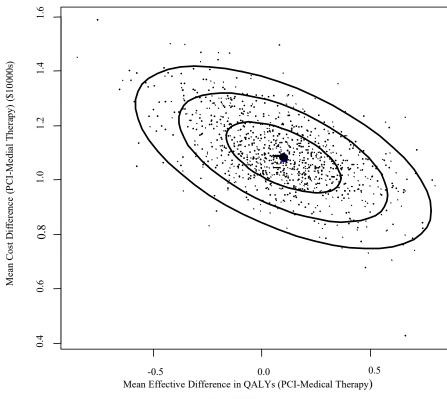





# Characteristics of variables in the analysis of probabilistic sensitivity analysis: COURAGE

| Effectiveness |                                         | Base Value | Range               | Distribution |
|---------------|-----------------------------------------|------------|---------------------|--------------|
|               | CVD (Mortality)                         | 0.0787     | 0.003, 0.20         | Beta         |
|               | AMI (Prevalence)                        | 0.1185     | 0.037, 0.30         | Beta         |
|               | Stroke (Prevalence)                     | 0.0257     | 0.016, 0.40         | Beta         |
|               | QALF lost                               | 0.8063     | 0.5, 2.6            | Gamma        |
|               | Utility                                 | 0.91       | 0.50, 0.95          | Beta         |
| Cost          | In-trial                                | \$29805    | \$19,000, \$45,230  | Gamma        |
|               | Initial cost                            |            | \$4,220, \$9,710    | Gamma        |
|               | Revascularization<br>Hospitalization    | \$9,660    | \$5,840, \$10,760   | Gamma        |
|               | Other cardiovascular<br>Hospitalization | \$9,671    | \$5,200, \$14,620   | Gamma        |
|               | Medication                              | \$3,184    | \$1,900, \$6,560    | Log-normal   |
|               | Outpatient service                      | \$6,509    | \$3,580, \$11,670   | Gamma        |
|               | Beyond trial period                     | \$65,313   | \$45,590, \$109,620 | Normal       |






### Probabilistic sensitivity analysis in COURAGE

- The probability assumptions of effectiveness were derived from American Heart Association statistics and the Cardiovascular Health Study.
- Monte Carlo simulation was performed to derive the differences in QALYs and mean cost between the two treatment groups (PCI + OMT vs. OMT alone).











#### Cost-effectiveness beyond the study period

- In-trial data used to project beyond the study period.
- Time horizon: 10 years; lifetime
- Life expectancy beyond trial period
- Probability of events beyond trial period
- **Discounting** (0%, 3%, 6%)





#### Cost-Effectiveness Analysis: Observational Studies

- Reduce selection bias
  - Matching
  - Weight adjusted
- The impact of unmeasured confounder





#### **Health Economics**

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

© 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER INC.

VOL. 65, NO. 1, 2015 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2014.09.078

#### **ORIGINAL INVESTIGATIONS**

# Cost-Effectiveness of Revascularization Strategies



#### The ASCERT Study

Zugui Zhang, PhD,\* Paul Kolm, PhD,\* Maria V. Grau-Sepulveda, MD, MPH,† Angelo Ponirakis, PhD,‡
Sean M. O'Brien, PhD,† Lloyd W. Klein, MD,§ Richard E. Shaw, PhD,|| Charles McKay, MD,¶ David M. Shahian, MD,#
Frederick L. Grover, MD,\*\*†† John E. Mayer, MD,‡‡ Kirk N. Garratt, MD, MSc,§§ Mark Hlatky, MD,|||
Fred H. Edwards, MD,¶¶ William S. Weintraub, MD\*

#### ABSTRACT

**BACKGROUND** ASCERT (American College of Cardiology Foundation and the Society of Thoracic Surgeons Collaboration on the Comparative Effectiveness of Revascularization Strategies) was a large observational study designed to compare the long-term effectiveness of coronary artery bypass graft (CABG) and percutaneous coronary intervention (PCI) to treat coronary artery disease (CAD) over 4 to 5 years.

**OBJECTIVES** This study examined the cost-effectiveness of CABG versus PCI for stable ischemic heart disease.

METHODS The Society of Thoracic Surgeons and American College of Cardiology Foundation databases were linked to the Centers for Medicare and Medicaid Services claims data. Costs for the index and observation period (2004 to 2008) hospitalizations were assessed by diagnosis-related group Medicare reimbursement rates; costs beyond the observation period were estimated from average Medicare participant per capita expenditure. Effectiveness was measured via



#### Characteristics of the Patients

| Characteristic                       | Unadjusted Data    |                    |         |  |  |  |  |
|--------------------------------------|--------------------|--------------------|---------|--|--|--|--|
|                                      | CABG<br>(N=86,244) | PCI<br>(N=103,549) | P Value |  |  |  |  |
| Age (yr)                             | 73.1±5.6           | 74.7±6.5           | < 0.001 |  |  |  |  |
| Male sex (%)                         | 68.6               | 57.8               | < 0.001 |  |  |  |  |
| History of heart failure (%)         | 11.5               | 10.2               | < 0.001 |  |  |  |  |
| History of myocardial infarction (%) | 25.3               | 24.6               | < 0.001 |  |  |  |  |
| Diabetes (%)                         |                    |                    |         |  |  |  |  |
| Any                                  | 38.6               | 34.4               | < 0.001 |  |  |  |  |
| Requiring insulin                    | 10.2               | 9.8                | 0.007   |  |  |  |  |
| Hypertension (%)                     | 84.8               | 83.4               | < 0.001 |  |  |  |  |
| Renal failure (%)                    | 6.1                | 6.2                | 0.57    |  |  |  |  |
| Chronic lung disease (%)             | 20.7               | 18.9               | < 0.001 |  |  |  |  |
| Cerebrovascular disease (%)          | 17.6               | 15.8               | < 0.001 |  |  |  |  |
| Peripheral arterial disease (%)      | 17.9               | 15.3               | < 0.001 |  |  |  |  |
| Body-mass index†                     | 28.7±5.8           | 28.7±5.9           | 0.78    |  |  |  |  |
| Smoking status (%)                   |                    |                    |         |  |  |  |  |
| Former smoker                        | 44.0               | 42.5               | < 0.001 |  |  |  |  |
| Current smoker                       | 12.9               | 11.6               | < 0.001 |  |  |  |  |
| Angina (%)                           |                    |                    |         |  |  |  |  |
| None                                 | 21.8               | 30.8               | < 0.001 |  |  |  |  |
| Stable                               | 49.6               | 22.6               | < 0.001 |  |  |  |  |
| Unstable                             | 28.6               | 46.6               | < 0.001 |  |  |  |  |
| Ejection fraction (%)                | 52.9±12.2          | 55.5±11.4          | < 0.001 |  |  |  |  |
| Three-vessel disease (%)             | 80.3               | 32.1               | < 0.001 |  |  |  |  |
| Urgent status (%)                    | 68.6               | 57.8               | <0.001  |  |  |  |  |

Plus-minus values are means ±SD.



#### Results: IPW Adjusted and Matched Data

|                           | Unadjusted           |                      |          | Inverse Probability Weighted Adjusted |                      |         | Matched Data         |                     |         |
|---------------------------|----------------------|----------------------|----------|---------------------------------------|----------------------|---------|----------------------|---------------------|---------|
|                           | CABG<br>(n = 86,244) | PCI<br>(n = 103,549) | p Value  | CABG<br>(n = 86,244)                  | PCI<br>(n = 103,549) | p Value | CABG<br>(n = 43,084) | PCI<br>(n = 43,084) | p Value |
| Age, yrs                  | 73 ± 6               | 75 ± 7               | <0.0001  | 74 ± 9                                | 74 ± 8               | 0.49    | 74 ± 6               | 74 ± 6              | 0.62    |
| Male                      | 69                   | 58                   | < 0.0001 | 62                                    | 63                   | 0.17    | 64                   | 64                  | 0.69    |
| History of heart failure  | 12                   | 10                   | < 0.0001 | 11                                    | 11                   | 0.07    | 11                   | 11                  | 0.31    |
| History of MI             | 25                   | 25                   | 0.0001   | 25                                    | 25                   | 0.51    | 24                   | 24                  | 0.89    |
| Diabetes                  | 39                   | 34                   | < 0.0001 | 36                                    | 36                   | 0.97    | 37                   | 37                  | 0.63    |
| Insulin-RDM               | 10.2                 | 9.8                  | 0.0069   | 9.7                                   | 9.9                  | 0.35    | 10.1                 | 10.0                | 0.66    |
| Hypertension              | 85                   | 83                   | < 0.0001 | 84                                    | 84                   | 0.58    | 84                   | 84                  | 0.37    |
| Renal failure             | 6.1                  | 6.2                  | 0.57     | 6.1                                   | 6.1                  | 0.80    | 6.2                  | 6.2                 | 0.84    |
| Chronic lung disease      | 21                   | 19                   | < 0.0001 | 19                                    | 20                   | 0.50    | 20                   | 20                  | 0.99    |
| Cerebrova scular disease  | 18                   | 16                   | < 0.0001 | 17                                    | 17                   | 0.86    | 17                   | 17                  | 0.93    |
| Peripheral artery disease | 18                   | 15                   | < 0.0001 | 16                                    | 16                   | 0.97    | 16                   | 17                  | 0.45    |
| BMI, kg/m <sup>2</sup>    | $29 \pm 6$           | $29 \pm 6$           | 0.78     | $29 \pm 9$                            | $29 \pm 8$           | 0.97    | $29 \pm 6$           | $29 \pm 6$          | 0.58    |
| Former smoker             | 44                   | 43                   | < 0.0001 | 43                                    | 43                   | 0.45    | 43                   | 43                  | 0.37    |
| Current smoker            | 13                   | 12                   | < 0.0001 | 12                                    | 12                   | 0.74    | 12                   | 12                  | 0.39    |
| No angina                 | 22                   | 31                   | < 0.0001 | 26                                    | 27                   | 0.23    | 28                   | 28                  | 0.94    |
| Stable angha              | 50                   | 23                   | < 0.0001 | 35                                    | 35                   | 0.46    | 34                   | 34                  | 0.65    |
| Unstable angina           | 28                   | 47                   | < 0.0001 | 39                                    | 38                   | 0.066   | 38                   | 38                  | 0.71    |
| Ejection fraction         | $53 \pm 13$          | $55 \pm 13$          | < 0.0001 | 54                                    | 54                   | 0.58    | $54 \pm 12$          | $54 \pm 13$         | 0.43    |
| Vessels diseased          |                      |                      |          |                                       |                      |         |                      |                     |         |
| 2                         | 20                   | 68                   | < 0.0001 | 47                                    | 46                   | 0.043   | 37                   | 37                  | 0.88    |
| 3                         | 80                   | 32                   |          | 53                                    | 54                   |         | 63                   | 63                  |         |
| Status urgent             | 35                   | 36                   | < 0.0001 | 36                                    | 35                   | 0.051   | 36                   | 36                  | 0.43    |

BMI = body mass index; CABG = coronary artery bypass graft; MI = myocardial infarction; PCI = percutaneous coronary intervention; RDM = requiring diabetus mellitus.





#### Cost-effectiveness Analysis PSBB Adjusted

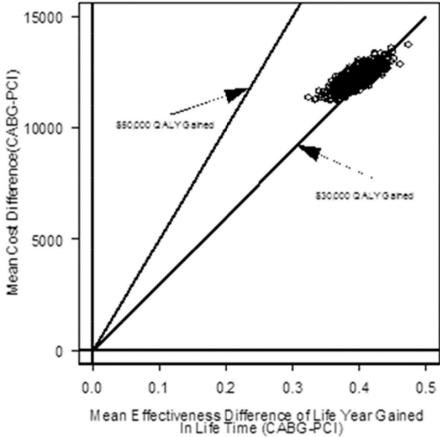
| TABLE 2 Cost-Effectiveness Analy | ysis: PSBB Adjusted |
|----------------------------------|---------------------|
|----------------------------------|---------------------|

|                                                                     | Δ CABG-PCI | Life-Years or QALY<br>Gained With CABG | ICER     | % CABG<br>Dominated | % CABG<br>Dominant | % <\$30,000/LYG | % <\$50,000/LYG | % <\$100,000/LYG |
|---------------------------------------------------------------------|------------|----------------------------------------|----------|---------------------|--------------------|-----------------|-----------------|------------------|
| Life-years from 2004 through 2008                                   | \$8,323    | 0.1178                                 | \$70,647 | 0                   | 0                  | 0               | 0               | 99.0             |
| Life-years from 2004 through 2008:<br>3% discount and PSBB adjusted | \$8,088    | 0.3088                                 | \$26,192 | 0                   | 0                  | 70              | 97.0            | 100.0            |
| Lifetime: 3% discount and PSBB adjusted                             | \$11,575   | 0.3016                                 | \$38,379 | 0                   | 0                  | 3.0             | 91.0            | 99.0             |
| Quality-adjusted lifetime:<br>3% and PSBB adjusted                  | \$11,575   | 0.3801                                 | \$30,454 | 0                   | 0                  | 47.0            | 98.0            | 100.0            |

ICER = incremental cost-effectiveness ratio; LYG = life-years gained; PSBB = propensity score bin bootstrapping; QALY = quality-adjusted life-year(s); other abbreviations as in Table 1.

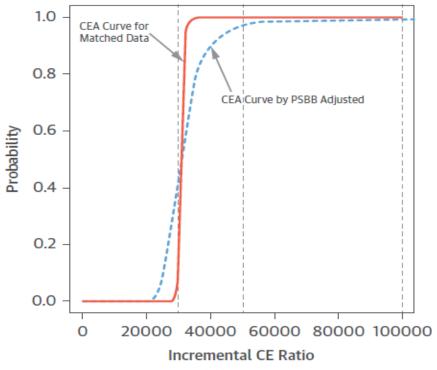





# **Cost-effectiveness Analysis: Matched Analytic Population**

| TABLE 3 Cost-Effectiveness Analysis: Matched Analytic Population |            |                                        |          |                     |                    |                 |                 |                  |  |  |  |
|------------------------------------------------------------------|------------|----------------------------------------|----------|---------------------|--------------------|-----------------|-----------------|------------------|--|--|--|
|                                                                  | Δ CABG-PCI | Life-Years or QALY<br>Gained With CABG | ICER     | % CABG<br>Dominated | % CABG<br>Dominant | % <\$30,000/LYG | % <\$50,000/LYG | % <\$100,000/LYG |  |  |  |
| Life-years from 2004<br>through 2008                             | \$8,079    | 0.2674                                 | \$30,217 | 0                   | 0                  | 45.0            | 100.0           | 100.0            |  |  |  |
| Lifetime: 3% discount                                            | \$12,157   | 0.3172                                 | \$38,330 | 0                   | 0                  | 0               | 100.0           | 100.0            |  |  |  |
| Quality-adjusted lifetime: 3% discount                           | \$12,157   | 0.3947                                 | \$30,803 | 0                   | 0                  | 21.0            | 100.0           | 100.0            |  |  |  |






#### Joint Distribution of Cost & Effectiveness Differences





#### Cost-Effectiveness Acceptability Curve







#### **Conclusion**

Over a period of 4 years or longer, patients undergoing CABG had better outcomes but at higher cost than those undergoing PCI. CABG will often be considered cost-effective at thresholds of \$30,000 or \$50,000/QALY.





### **CEA** of multinational trials

- Enrollment from different countries (health care systems).
- Costs from a single country otherwise CEA doesn't apply anywhere.
- Costs in US, Canada, UK, EU, Australia





## **Cost-effectiveness publications**

- William S. Weintraub, William E. Boden, Zugui Zhang, Paul Kolm, Zefeng Zhang, John A. Spertus, Pamela Hartigan, Emir Veledar, Claudine Jurkovitz, Jim Bowen, David J. Maron, Robert O"Rourke, Marcin Dada, Koon K. Teo, Ron Goeree, Paul G. Barnett, on Behalf of the Department of Veterans Affairs Cooperative Studies Program No. 424 (COURAGE Trial) Investigators and Study Coordinators, Cost-Effectiveness of Percutaneous Coronary Intervention in Optimally Treated Stable Coronary Patients, Circ Cardiovasc Qual Outcomes Sep 01, 2008; 1: 12-20.
- Marcoff, L., Zhang, Z., Zhang, W., Ewen, E., Jurkovitz, C., Leguet, P., Kolm, P., Weintraub, WS. Cost-Effectiveness of Enoxaparin in Acute ST-Segment Elevation Myocardial Infarction (ExTRACT-TIMI 25). Journal of the American College of Cardiology. 54(14), 1271-1279, 2009.
- Welsh RC, Sauriol L, Zhang Z, Kolm P, Weintraub WS, Theroux P. Cost-effectiveness of enoxaparin compared with unfractionated heparin in ST elevation myocardial infarction patients undergoing pharmacological reperfusion: a Canadian analysis of the Enoxaparin and Thrombolysis Reprefusion for Acute Myocardial Infarction Treatment – Thrombolysis in Myocardial Infarction (ExTRACT-TIMI) 25 Trial. Canadian Journal of Cardiology 2009;25:e399-405.
- Zhang Z, Kolm P, Boden WE, Hartigan PM, Maron DJ, Spertus JA, O'Rourke RA, Shaw LJ, Sedlis SP, Mancini GBJ, Berman DS, Dada M, Teo KK, Weintraub WS. The Cost-Effectiveness of Percutaneous Coronary Intervention as a Function of Angina Severity in Patients With Stable Angina. Circulation Quality and Outcomes 2011;4:172-182.
- Zhang Z, Kolm P, Grau-Sepulveda M, Ponirakis A, Sean O'Brien S, Klein L, Shaw R, Mckay C, Shahian D, Grover F, Mayer J, Garratt K, Hlatky M, Edwards F, Weintraub W. Cost-effectiveness of Revascularization Strategies: The ASCERT Study. *Journal of the American College of Cardiology.* 2015;65(1): 1-11.







# Thank you

paul.kolm@medstar.net

It's how we treat people.

